- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Luo, Zhiping (3)
-
Ede, Sivasankara Rao (2)
-
Edwards, Caressia S. (2)
-
George, Gibin (2)
-
Wen, Jianguo (2)
-
Yu, Lei (2)
-
Edwards, Caressia (1)
-
Hayes, Jacob (1)
-
Hayes, Jacob I. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hayes, Jacob; Edwards, Caressia; George, Gibin; Yu, Lei; Wen, Jianguo; Luo, Zhiping (, Microscopy and Microanalysis)null (Ed.)
-
George, Gibin; Edwards, Caressia S.; Hayes, Jacob I.; Yu, Lei; Ede, Sivasankara Rao; Wen, Jianguo; Luo, Zhiping (, Journal of Materials Chemistry C)Fabrication of highly stable, reversible, and efficient portable sensors for the detection of explosives for safety and security is challenging due to the robustness of the currently available detection tools, limiting their mass deployment to the explosion prone areas. This paper reports a new direction towards the sensing of nitro- and peroxide-based explosives using highly stable rare-earth-doped BaWO 4 nanofibers with remarkable sensitivity and reversibility. BaWO 4 nanofibers doped with Tb 3+ and Eu 3+ ions are fabricated through a sol–gel electrospinning process, and their emission characteristics and application as a fluorescent probe for the sensing of 2-nitrotoluene and H 2 O 2 , explosive taggants representing a broad class of explosives, are studied in detail. Scheelite structured BaWO 4 nanofibers exhibit excellent luminescence characteristics, and the rare-earth ion doping in the polycrystalline BaWO 4 nanofibers is tailored to achieve blue, green, red, and white light emissions. These nanofibers are extremely sensitive to 2-nitrotoluene and H 2 O 2 with rapid response time, and sensitivity is observed within the range of 1–400 ppb and 1–10 ppm, towards 2-nitrotoluene and H 2 O 2 , respectively. The fluorescence quenching of BaWO 4 nanofibers in the presence of 2-nitrotoluene and H 2 O 2 is exponential with the quenching constants up to 1.73 × 10 6 and 2.73 × 10 4 L mol −1 , respectively, which are significantly higher than those of most of the fluorescent probes based on metal–organic frameworks and conjugated organic materials. After exposing to 2-nitrotoluene, the luminescence of the nanofibers is retained completely upon heating at 120 °C for 10 min and the sensory response is retained as fresh nanofibers, and currently available fluorescent explosive sensors could not achieve such a recovery. The high sensitivity and selectivity of scalable rare-earth-doped BaWO 4 nanofibers provide a new platform for the simultaneous detection of two classes of explosives.more » « less
An official website of the United States government
